E	录
	· · · · ·

目录		1
前言(基本参	参数)	2
第一章 仪器	的安装、安全使用注意事项	3
1.1 安美	装环境的要求	3
1.2 仪	器电源的要求	3
1.3 溶	剂的要求	4
1.4 关于静	争电的注意事项	4
第二章 仪器	的安装	5
2.1 检测器	器进液管连接	5
2.2 检测器	器出液管连接	5
2.3 电源线	线的连接	5
2.4 仪器质	后背板	6
第三章 仪器	特点及原理	6
3.1 仪器自	的特点	6
3.2 仪器厚	原理	7
第四章 仪器	的操作	8
4.1 打开/訣	关闭电源	9
4.2 主要现	功能详解	10
第五章 界面	「流程及界面说明	12
5.1 显示面	面板	12
5.2 辅助项	功能的参数	17
5.3 VP 功能	能的参数	18
第六章 关键	专家部件介绍	19
第七章 故障	宣与维修	20

前言

感谢您购买、使用赛智科技(杭州)有限公司生产的LC-10Tvp系列紫外检测器,本说明书包括:安装、安全使用注意事项,仪器系统介绍,仪器的安装,仪器的操作,仪器的日常维护,以及简单的维修指南与故障推断等。本手册在您使用中具有指导作用,在仪器使用前请先阅读,使用后请妥善保管本手册以备今后参考。

特别提醒:在动手操作仪器之前,请先熟悉本产品,请勿在未完全了解本手册的内容前 使用本仪器;如果仪器被转借或出售,请将本手册提供给下一位用户,如果本手册或仪器上 警告标签丢失或损坏,请及时向赛智售后部联系更换;在安装使用前,请详细阅读本手册, 遵循仪器的安装、安全使用注意事项,否则可能发生危险,严重时可能造成设备损坏,甚 至人身伤亡!

基本参数介绍:

波长范围:	190mm 700mm
波长示值误差:	≤±11mm
波长重复性误差:	≤±0.1mm
动态噪声:	≪± 0.75×10⁵AU(甲醇, 1nā/mìn,254mu,20° C)
静态噪声:	≤±0.5×10⁵AU(空池,响应时间1秒,20°C)
动态基线漂移:	≪±1×10 4AU/h (甲醇,1 nl/min, 254mp,20° C)
静态基线漂移:	≪0.5×104AU/h(空池,响应时间1秒,20°C)
线性范围:	≥10 ⁴;
最小检测浓度:	≪ 4×10°g/吨(萘/甲醇溶液)
定性重复性:	RSD ≤ 0. 1%
定量重复性:	RSD ≤ 0. 5%
光谱带宽:	Gum
流通池体积:	10 μ L
光程:	10mm
时间程序功能:	有

第一章 仪器的安装、安全使用注意事项

1.1 安装环境的要求

1、高效液相色谱系统使用多是易燃、易爆、有毒化学溶剂,因此仪器所处的环境必须通风 良好;否则。溶剂蒸气会引起中毒或燃烧并引起火灾。

2、高效液相色谱系统使用大量的易燃化学溶剂,确保仪器所在房内无任何能引发火灾的火花产生源(如明火、吸烟或其它可产生火花、明火的设备), 否则容易引起火灾安全事故。

3、由于是配合液相柱使用,形成高压流体输送仪器系统, 溶剂的压缩性与泵头压力易受到外界温湿度的影响,为确 保流量精确度的高可靠性,请安装空调或其他调温调湿设

备予以控温控湿。

4、由于有机溶剂的危险性,房间内应配置消防设备,房间附近应配备处理溶剂所能引发对人体伤害时的应急措施(自来水、清洁液、急救电话等)。

5、确保仪器的安装平台水平稳固,足以承受仪器以及其 它相关设备的重量,安装平台的宽度、长度能确保仪器 的正常安装与使用。

6、本仪器是高精度仪器,请勿将仪器安装在粉尘颗粒较

多、噪音较大、易振动的地方,会对影响仪器的正常使用与仪器的寿命,甚至可能导致仪器 产生严重的损坏及其它故障。

注意: 本仪器的重心不很均衡,重心处于仪器的前半部分(靠近前置面板一端),因此, 搬动仪器时需加以小心,确保仪器不会翻倒、跌伤。在搬动时,应将所有与该单元连接的部 件拆卸(外接溶剂管路,电源线,通信线等)。

1.2 仪器电源的要求

1、.仪器需要 1AT(220-240V) 2AT(100-120V) 50-60Hz 的交流电源,电源必须稳定, 否则请安装电源稳压器,确保电源符合要求。

请按您的稳压电源的输出的电压(国内用户一般为220V,也可用调压器调到上述电压) 依据上述要求选择您的仪器保险丝大小。

确保电源电压的保险丝的容量符合上述要求,否则有可能因电源与保险丝的选择不当,引起仪器故障、电击、损坏、甚至火灾。

2、仪器所用电源必须有良好的接地。

警告: 若由于您的电源不符合要求而导致的任何损失, 本公司将不负任何责任。

1.3 溶剂的要求

1、本仪器使用的溶剂必须是 HPLC 或相当于该级别纯度的试剂,使用前必须用 0.45μm 或更细的滤膜加以过滤,使用水配制流动相时,应使用超纯水或蒸馏水。

注意: 溶剂流动相必须除去颗粒物,以免划伤柱塞杆密封圈,堵塞色谱柱或单向阀组件。注意到这些,将能确使仪器正常工作并能延长仪器的使用寿命。

2、含有卤离子的流动相,将会腐蚀不锈钢的管路及零部件,因此应尽量避免使用此类 溶剂。若必须使用,应控制卤离子的浓度,并在分析结束后及时用水清洗整个 HPLC 系统。

3、如果您的仪器流路系统上有 PEEK (聚醚醚酮)材料时,请不要使用以下流动相:浓酸、二氯乙酸、丙酮、四氢呋喃、二氯甲烷、三氯甲烷和二甲砜。此类溶剂的使用将会引起 PEEK 材料变脆后破裂。但采用 0.5%以下的丙酮一水溶液作流动相来检查仪器梯度过程,则 不会产生不良影响。

4、当使用缓冲液进行分析时,请在分析结束后及时用水将泵头及柱塞杆、溶剂管路冲洗干净,特别是柱塞杆部件单元。如果不及时清洗该系统将会严重影响仪器的使用寿命。

5、合格溶剂在进入本仪器之前,还必须彻底脱气。以除去溶剂内的微小气泡,保证仪器正常工作和高可信度。脱气可以使用超声波脱气。

6、仪器表面请不要使用有机溶剂擦洗,以免表面被溶解或褪色。您可以用水或专门的 仪器表面清洁剂来擦洗。

1.4 关于静电的注意事项

溶剂输送泵(HPLC系统部件单元)单元多使用易燃、易爆的有机溶剂,因此仪器所在的环境中溶剂蒸汽浓度较高,在明火或静电火花作用下极易爆炸产生火灾事故。实验室仪器环境中明火必须被禁止,控制(如禁止吸烟、明火或不与其它能产生火花的仪器同放于一个环境中),对于另一个引发事故的危险诱因——静电,我们应采取积极的预防措施,预防仪器的静电荷的产生与累积。

预防措施主要有:

- 1、保证仪器有良好的接地。
- 2、废液存贮使用金属器,并接地。
- 3、密封溶剂瓶与管线的间隙,防止溶剂蒸汽挥发。
- 4、若不使用金属溶剂瓶,请用金属线扦入溶剂瓶的液体中,并将另一端良好接地。
- 5、不要使用带电物体包括带静电的人体去接触容器或仪器。
- 6、操作人员应穿抗静电的服装,鞋等,并在地板上喷散抗静电物质等预防措施。

7、本仪器在高速输送流体时,请尽可能选用大内径的流体管线,以降低流速,减小静 电的产生。

8、保持仪器环境的湿度,湿度在65%以上也可防止静电的产生,并有利于静电的消去。

第二章 仪器的安装

将包装箱拆开,取出检测器单元,检查装箱单和配件是否对应,若配件缺失,请及时联系我 们。将检测器单元置于工作台上,打开检测器前盖。 安装步骤:(安装工程师若上门服务,此过程由工程师完成,仅供学习参考用)

2.1 检测器进液管连接

将色谱柱的出口管与检测器进液管连接: 先将高压接头套入不锈钢管路中,再将刃环套上,用扳手在色谱柱出口拧紧,使刃环固定住,

2.2 检测器出液管连接

将检测器出液口用 peek 拧紧在两通上,用特氟龙废液管装入 peek 中,拧紧在两通的另一头。

2.3 电源线的连接

将配件包中电源线取出三头插孔处插在插线板上,三孔处插在仪器电源接入处。 注意:接线板应有良好的接地!供电电压应稳定,若电压不稳定,可能会引起仪器损毁,必 要时请使用稳压器!

2.4 仪器后背板

RS232 是通过针对孔串口线将仪器与电脑连接的端口

第三章 仪器特点及原理

SPD-10T 紫外/可见波长检测器是完整的高效液相色谱仪中重要的组成部分。LC-10TVP 高压输液泵(或由其他厂家生产的泵),该检测器可以用于常规实验室的分析和方法开发。 SPD-10T 检测器的设计以当今最先进的技术为先导,通过数字化的数据处理和控制,其基线 噪声和漂移降低到一个新的极限。由于采用了数字量输出功能,该检测器可以与计算机直接 通过串行口相连而不需要任何数据采集单元。

3.1 仪器的特点

Ⅰ 先进的光学单元设计

SPD-10T 检测器的光学系统融入了新的设计思路。正如我们所知,紫外检测器的原理是基于朗伯一比尔定律,因此我们把重点放在光路的改进上面,以使位于样品路和参比路的光电池获得最大的光能量。

$A = \lg(I_0 / I) = elc$

其中,A 为吸光度, I_0 为发射光强度,I为透射光强度,e为摩尔吸光系数,l为流通池光程,c为溶液浓度。

重点改进:

- 1) 光源:
- 2) 光路
- 3) 全新设计的滤光片

- 4) 采用全息光栅
- 全新的流通池
- Ⅰ 整体的数字信号处理和控制系统
- Ⅰ 全新设计的集成一体化电压,使供电更稳定,适合防爆场合使用

3.2 仪器原理

图表 1

- 1- 氘灯(或钨灯)
- 2- 凸面镜
- 3- 狭缝
- 4- 光栅
- 5- 半透半反镜
- 6- 参比光电二极管
- 7- 流通池
- 8- 样品光电二极管

从光源(1)发出的光通过凸面镜(2)之后再通过狭缝(3),凹面光栅(4)上,其中 一路经由半透半反镜片(5)后,由参比光电二极管接收(6);另一部分透过流通池(7)后, 由样品路光电二极管(8)接收。

通常,一个检测器可以划分为控制及数据采集单元,光学单元,电源部件和显示单元等 几个主要部分:

检测器控制和数据采集单元是用来接收检测器控制参数,如键盘输入、RS232 串口输入, 光电转换及数据计算等功能。来自两个光电二极管上的信号通过数字运算最终传输到数据输 出端口。因此, SPD-10T 检测器可以直接通过 RS232 口通讯与电脑相连而不需要额外的数 据采集装置。

光学单元包括灯,单色器,流通池。

带有防爆设计的集成一体化电压模块为处理器系统提供的直流电源(+5V,2A)及模拟电路 使用的电源(±15V,0.5A)。

第四章 仪器的操作

SPD-10T 检测器的显示单元与按键名称和操作功能:

图表 2 显示与键盘

键盘区

表格 1 按键名称及其功能

按键名称	功能说明
Zero	自动清零,基线清零按键。
入	波长快捷设置键。
Edit	波长时间程序编辑键。
Run	时间程序运行键。
Sleep	睡眠功能键,用于在任何界面开启和关闭显示。
Scan	波长扫描开始停止按键。
CE	撤销功能。在任何界面返回其上层界面。
VP	VP 功能键,进入 Vp 界面。
Func	同层界面切换,在 Vp 界面下用于同层切换和进入下一层。
Back	返回功能,用于返回同层的上一个界面。
Enter	确认功能。
数字键盘	输入每一条的数字值。

显示区

表格 2 主界面显示数据及其意义

编号	显示	功能
1 Lamp 显示检测器灯的开关状态		显示检测器灯的开关状态
2 WaveLength		当前通过流通池光线的波长
3	AU	显示实时吸光度
4	AUFS	显示输出比例

4.1 打开/关闭电源

1, 按下电源开关时, 电源打开, 再次按下电源开关, 电源关闭。

2, 打开电源时, 蜂鸣器短暂鸣响, 液晶屏会依次显示公司 LOGO 和软件版本号, 然后进入程 序自检流程, 流程如图表 3 所示。

4.2 主要功能详解

4.2.1 波长的设定

波长的设定是在如右图所示的界面进行 的。用户可以通过两种方式进入此界面: 1, 在主界面下直接按下键盘上的'入'键。2, 在主界面下按一次'Func'键,再按一次'Enter' 键进入此界面。通过数字键输入预期波长,然 后按下'Enter'键确认。如:预期波长为 300nm, 那么分别按下数字键 '3' '0' '0' 然后按下 'Enter'键,界面会转入如右图所示界面,表

示波长正在设定过程中,等右图界面跳过,会 显示如右侧第三张图片的界面,此时波长设定 完毕,按下两次'CE'键返回主界面。如想 再次设定波长则重复上述过程。

如果波长输入错误,则在按完数字键之后 不要按下'Enter'键,而使用'CE'键放弃 此次操作,则波长不会被修改。

LAMBDA 254 Input 190 - 700

LAMBDA 300... Input 190 - 700

LAMBDA

300

Input 190 - 700

4.2.2 响应时间设定(预留)

在本检测器中,响应时间可以设置成为0-9共 十个等级,每级对应的响应时间如表格 3 所 示。

表格 3 响应级别与响应时间对照表

级别	响应时间 /ms
0	4
1	10
2	20
3	100
4	300
5	500
6	600
7	1200
8	1600
9	2000

响应时间的设置界面如右图所示。进入此界面在主界面按一次'Func'键,按下'Enter' 键之后再按一次'Func'键,则进入此界面。通过数字键盘输入预期设定值,按'Enter'

RESPONSE Input 0 - 9

4

确认输入,按'CE'放弃输入。

4.2.3 光源设定

光源设定界面如右图所示。进入此界面 需要在主界面按一次'Func'键,按下'Enter' 键之后再按两次'Func'键,则进入此界面。 通过数字键盘输入预期设定值,按'Enter' 确认输入,按'CE'放弃输入。

注:可以看到在此界面参数可以设置成为 0, 1, 2。但是本仪器不支持钨灯,所以在设定值为 2 时氘灯将熄灭,所以请用户不要将其设定为 2。在后续的版本中钨灯将添加进来,此处为预留。

LAMP

D2 LAMP

在氘灯关闭的状态下设定参数为1时, 系统将进入点亮氘灯程序,其界面如右图所 示。氘灯点亮需要几秒钟的时间,请用户耐 心等待。如果点亮成功,将会跳转会光源设 定界面,参数显示为1。如果点亮失败,会 报警,并且参数不会改变。

4.2.4 密码修改

本检测器的初始密码为 1234。用户 可以根据自身需要设定一个四位的密 码。密码的设定界面如右图所示。按下 'Enter'键之后,将要求用户输入两次 要修改的密码。如果两次输入的密码不 同,则修改无效,否则密码修改成功。

4.2.4 时间程序和波长扫描

此步具体操作在软件上完成,仪器界面上暂不可用,且不方便使用,仪器与软件通讯连接后,在软件上打开波长扫描和时间程序窗口即可设置,具体操作方法参见软件操作指南。

第五章 界面流程及界面说明

5.1 显示面板

5.1.1 参数设定界面流程

打开电源开关,经过大约3分钟的开机自检,仪器显示初始屏幕。 通过按Func、VP和Edit键,可以将初始屏幕切换为下列三个屏幕之一,如图表4所示。 Func:基本设定屏幕和辅助功能屏幕 VP:VP功能屏幕

5.1.2 基本设定屏幕和辅助功能设定屏幕

在本节中,下面的流程图中显示了基本设定屏幕和辅助功能设定屏幕。 对于每一屏幕,都按 Func 显示下一屏幕,按 Back 返回。 在辅助功能组屏幕,按 Enter 进入每个组。 按 CE 返回初始屏幕。

图表 5

5.1.3 VP 功能屏幕

下面的流程图中显示了VP 功能屏幕。 在初始屏幕上按 VP 显示每组屏幕。 按 CE 返回初始屏幕。 按 Func 或者 Back 在 VP 选定的组之间切换设定屏幕。 按 CE 返回该组的初始屏幕。

图表 7

图表 8

5.2 辅助功能的参数

辅助功能中包含四个组,分别为参数设定组、控制组、系统设定组和监视显示组。 注:下文表格中所提到的预留界面都是为以后产品升级所准备,而本仪器中并无此项功能,用户对相应的 参数的设定和操作均无效。

表格 4 参数设定组

命令	操作	说明	缺省值	备注
LAMBDA	数字键盘	波长设定	254	-
RESPONSE	数字键盘	响应时间设定	2	-

LC 10Tvp 系列使用说明书 版本号 4.0

LAMP	数字键盘	设定灯开/关	1	-
RANGE	数字键盘	设定记录仪输出范围	0.01	-
EVENT	数字键盘	设定外部事件端子状态	0	预留

说明:

1,波长的修改需要一定的时间,修改波长所用时间长短与修改前后波长差的大小有一定关系。

2,响应时间的设定值与真正的时间的对应方式见表格 3 响应级别与响应时间对照表。

表格 5 控制组

命令	操作	说明	缺省值	备注
SCAN FILE	数字键盘	设定要存储扫描的数据的文件号	0	-
SCAN BGN	数字键盘	设定扫描开始波长	190	-
SCAN END	数字键盘	设定扫描结束波长	370	-
SCAN STP	数字键盘	设定扫描波长步长	1	-
PLOT SPD	数字键盘	设定将光谱数据输出到记录仪的速度	1	预留
SPC PLOT	'Enter'	将光谱数据输出到记录仪	-	预留

表格 6 系统设定组

命令	操作	说明	缺省值	备注
LOCAL	数字键盘	选择由本机控制还是由电脑控制	0	-
LINK ADRS	数字键盘	设定由电脑控制时的地址	1	-
KEY CLOSE	'Enter'	锁定键输入	-	-
BRIGHTNESS	数字键盘	设定显示亮度	10	-
BEEP MODE	数字键盘	设定蜂鸣器的操作	0	-

表格 7 监视显示组

命令	操作	说明	缺省值	备注
SMPL EN	显示	显示样品池光强度	-	-
REF EN	显示	显示参照池光强度	-	-
D2 TIME	显示	显示氘灯的累计操作时间	-	-
W TIME	显示	显示钨灯的累计操作时间	-	预留

5.3 VP 功能的参数

₩ 功能中包含四个组,分别为产品信息组、维护信息组、有效性支持组和校正支持组。
 注:下文表格中所提到的预留界面都是为以后产品升级所准备,而本仪器中并无此项功能,用户对相应的
 参数的设定和操作均无效。

表格 8 产品信息组

命令	操作	说明	缺省值	备注
SN	显示	显示产品的 SN 码	-	-
SWID	显示	显示产品的软件版本信息	-	-
Register	显示/数字键	显示和输入注册码	-	-

表格 9 维护信息组

		-	-			
命令	操作	说明	缺省值	备注		
TOTAL OP TIME	显示	显示仪器的累计操作时间	-	-		
D2 LAMP USED	显示	显示氘灯的操作时间和更换报警时间	-	-		
W LAMP USED	显示	显示钨灯的操作时间和更换报警时间	-	预留		
表格 10 有效支持组						
命令	操作	说明	缺省值	备注		
DATE	数字键盘	显示/ 设定日期	-	-		
TIME	数字键盘	显示/设定时间	-	-		
LEAK SENSOR	日二	泥迹仕咸盟检测		新网		
TEST	业小	砌砌在恐的位例	-	贝田		
表格 11 校正支持组						
命令	操作	说明	缺省值	备注		
PASSWORD	数字键盘	输入密码	1234	-		
WAVE CALIB	数字键盘	波长校正	-	预留		
D2 TIME	数字键盘	氘灯报警时间设置	2000	-		
W TIME	数字键盘	钨灯报警时间设置	2000	预留		
ABS CALIB	数字键盘	吸光度补偿系数	-	预留		
ABS COMP	数字键盘	吸光度校正系数	1.000	预留		
INIT PARAM	数字键盘	存储器初始化	-	-		
CHANGE PASSWORD	数字键盘	修改密码	-	-		

说明**:**

1, 仪器的出场密码为 1234, 用户可以根据需要自行设定一个四位的密码, 如果密码输入不正确用户则无 法访问校正支持组的其他选项。

2,存储器的初始化,将会把所有存储器的数据恢复到出场设置。但仪器波长不会改变。

3, 密码的修改需要用户输入两次相同的新密码, 两次输入的新密码相同, 则新密码生效, 否则密码修改失 败。

第六章 关键零部件介绍

名称	型号规格
检测器主板	D1110
检测器开关电源	MPS-30-15
检测器电机	42HSO2
检测器驱动	TE2302
氘灯电源	YQK002A
光路	10T
流通池	10T
光栅	32*32*7.8
半透半反	Ф17*5 双 R20.75

第七章 故障与维修

表格 12

故障描述	原因分析	对策
1.检测器无显示	主机电源保险丝断	更换新的保险丝 (更换之前应分析 保险烧毁的原因)
2.显示字符混乱	E ² PROM 被瞬态电压冲乱	初始化 F24C04(需要密码)
3.Key board Error 键盘检查错误	键盘电缆连接不牢 或键盘控制芯片(7290)失效	连接好电缆如果问题没有解决请 联系厂家
4.RAM 检测错误	随机存储器故障	重新启动检测器,如果故障依旧存 在,更换主板。
5. 氘灯不能启动	检查检测器参数设置,是否在主 界面显示为"D2"状态	将主界面的灯状态更改为"D2"
	灯电源故障	更换灯电源
6.仪器自检时出现溢	由灯源发出的光到达前置板上 的光强度太大	检查自检时,滤光片的继电器是否 吸合
出警告"OVERFLOW"	样品路及参比路的前置板其中 之一发生故障	通过参考 SAM/REF 的量值,判断出 问题的前置板,并更换
7.没有信号输出	灯没有点亮,或两路值过低	F参考 5,6
	使用数字信号输出时,检查从检 测器到计算机的电缆和连接	如果可能的话,更换信号电缆及主 板上的通讯芯片 MAX232。故障依 旧,请与厂家联系
	前置板或参比板故障	更换新的前置板或参比板
	检查量程设定值,推荐设定为2 进行检测	将量程参数设为合适的数值,重新 检测 请参考 "量程菜单"
	时间常数设置太小	更改时间常数为常用值 1, 或 2s
	氘灯接近或超过使用寿命	更换新氘灯
8.噪声太大	流通池太脏 SAM 路光强度太低	清洗流通池
	流动相中存在气泡	 1、将流动相脱气 2、增加流通池出口的反压
	仪器接地不良	测量仪器接地阻抗,重新接地
	波长设定错误,如果波长太低, 则噪声增加	合理选择检测波长
9.漂移太大	不同流动相混合	如果是运行在梯度环境下,漂移是可以接受的。其他情况,需要彻底

	平衡流动相。
系统预热时间太短	延长预热时间,等待电器部件和灯 源稳定
色谱柱没有平衡好	延长平衡时间
强空气对流干扰	检查安装场所是否存在强空气对 流,改变安装位置或阻止空气对流
流动相有持续的微渗	检测何处微渗,并改善连接。 对 比停泵时的基线状态。
流动相污染,停止高压输液泵输 液,观察有何异同	检查泵,色谱柱,溶剂瓶&流动相 是否被污染
液路中存在大的死体积空间,该 体积中的残余物质不停的被冲 出,导致基线的持续漂移	检查进样阀、色谱柱接口、流通池 入口的连接,如果死体积过大,更 换接头